BSD

Diffusion Tractography

- Goal of tractography
- Estimating Fibre Orientations BEDPOSTX
- Probabilistic Tractography PROBTRACKX
- ProbtrackX outputs
- Tractography limitations

DTI tractography

v₁ map Principal Diffusion Direction

Principal Diffusion Direction

Assumption:

Direction of maximum diffusivity (in anisotropic voxels) is an <u>estimate</u> of the major fibre orientation.

But is WM always coherently organised within a voxel?

Unfortunately not, complex fibre patterns (e.g. crossings) are very common at the voxel scale.

Williams, Gluhbegovic, and Jew, "The Human Brain: Dissections of the Real Brain", Virtual Hospital, University of Iowa, 1997

Predictions from the tensor model no crossing fibres

How good is the DTI Model in regions with crossing fibres?

- In voxels containing two crossing bundles, the tensor ellipsoid is pancake-shaped (oblate, planar tensor).
- In voxels containing three crossing bundles, the tensor ellipsoid is spherical.
- In these areas, DTI \mathbf{v}_1 is meaningless.

Uncertainty on DTI Fibre Orientation Estimates

Repeat an acquisition many times and obtain the variability in v_1 from the different datasets.

Cones of uncertainty on DTI v_1

Jones, 2002

Do we have to use the DTI model to estimate orientations? Not really, many models exist

Ball & Sticks Model Unlike the DT model, it can represent many orientations

- Anisotropic tensors (sticks) with isotropic background (ball)
- Fibre Orientations modelled explicitly and separated from isotropic partial volumes

Predictions from the ball and sticks model crossing fibres

Markov Chain - Monte Carlo (MCMC) Sampling

Output in Each voxel = Distributions of Parameters

Ball & Sticks Model Selection

- Model selection problem: One, two or more fibres within a voxel?
- Automatic Relevance Determination: Only estimate complexity that is supported by the data

Modelling Complex Fibre Architectures Automatic Relevance Determination (A.R.D.)

ARD1

Measured Signal

Modelling Complex Fibre Architectures Automatic Relevance Determination (A.R.D.)

- After running BedpostX all voxels will have estimated parameters for the maximum number of sticks requested.
- But due to ARD, the sticks that are not supported in a voxel will have an almost zero volume fraction.
- We use a threshold (e.g. >5%) to **exclude sticks with tiny volume fraction**.

Ball & Sticks Orientations

All sticks, with secondary ones thresholded (*f_n*>5%)

DTI vs Ball & Sticks Orientations

DTI

A large portion of the WM supports crossing fibres

Coherence in orientations shows that we are not over-fitting (the ARD works)

Multi-Shell Diffusion Acquisitions Why bother?

Higher b value gives us more angular contrast!!!

Multi-Shell Diffusion Acquisitions Why bother?

Generalised Ball & sticks Model Gets best of both worlds

- Multi-shell model (or model=2) in Bedpostx options.
- Allows representation of multiple diffusivities within a voxel (rather than just one).
- More accurate model for multi-shell data & partial volume effects.

Human Connectome Project Data

*Jbabdi, Sotiropoulos et al, MRM 2012 * Sotiropoulos, Jbabdi et al, NeuroImage 2013

Faster bedpostx on GPUs

Hernandez et al, Plos One 2013