

Registration: Single-Stage and Multi-Stage Applications

Registration with FSL

Two main tools: **FNIRT & FLIRT**

(FMRIB's Non-Linear/Linear Image Registration Tool)

		First-level analysis 🚽 Full analysis 🖃
Misc	Data	Pre-stats Stats Post-stats Registration
	nitial struc - Main stru	ctural image
-	structur	ral_brain
	Linear	Normal search = 6 DOF =
- 	-Standaro	d space
	Ausr/loca	al/fsl/data/standard/MNI152_T1_2mm_brain 🔄
Γ	Linear	Normal search 🛁 12 DOF 🛁
	Nonline	ear 📕 Warp resolution (mm) 10 🚔
I-		

\varTheta \varTheta 🔿 📉 FLIRT - FMRIB's Linear Image Registration Tool - v5.4.2

Mode Input image	> Reference image 🛁	
Reference image	/usr/local/fsl/etc/standard/avg152T1_brain.hdr	
Model/DOF (input 1	o ref) Affine (12 parameter model) -	
Input image	/usr/local/feeds/data/structural.nii.gz	
Output image	/Users/mark/tmp/struct2avg	
Number of secondar	rimages to apply transform to 0 ▲	
Go	Exit	Utils

Both tools used by FMRI and Diffusion tools (FEAT, MELODIC & FDT)

Preliminary Steps

Recommended steps:

- Reorientation (fslreorient2std)
- Brain Extraction (BET)
- Bias-field correction (FAST see later)

Note that labels are correct in both cases

Single-Stage Registration

Scenario:

Have two (or more) different types of images from the same subject For example, T₁-weighted and T₂-weighted images

Objective:

Have images aligned so that, for example, they can be used for multi-modal segmentation

Solution: FLIRT with 6 DOF (rigid-body)

Single-Stage Registration

Reference

Input

- Single subject \Rightarrow 6 DOF = FLIRT
- T₂-wt to T₁-wt ⇒ multi-modal cost function (e.g. default of correlation ratio)
- Run brain extraction on both images
- Choose image with better resolution or contrast as the reference
- Always check your output

Artefaction Detection Device

LOOK AT YOUR DATA!

www.pickpik.com

Visual Check

Always assess registration quality visually! Can use:

- FSLeyes (using overlay or flicking between images)
- slices for a static view use (as in FEAT)

slices T2_to_T1 im T1 im

Grayscale from first image

Red edges from second image

Х

Registration in FSL

Reference

- In FSL the **reference image** controls the FOV and resolution of the output image
- Transformations are given:

from input space to reference space

- Inverse transformations can easily be calculated to go from reference space to input space when needed
- Can overlay images in FSLeyes with different FOV or resolution: i.e. images can be in different spaces and resolutions
- Images can be **resampled** into a different space by applying a previously derived transformation

Multi-Stage Registration

Scenario:

Doing a functional (or diffusion) study Have EPI and T_1 -weighted of each subject

Objective:

Need to register images to a common (standard) space to allow the group study to be performed

Solution:

2-stage registration with FLIRT & FNIRT (in FEAT)

Two Stage Registration

Registering very different images is difficult due to:

- Differences in individual anatomies
- Different contrasts in various modalities
- Distortions which differ between images

To register an EPI to a standard space template (e.g. MNI152) use a structural intermediate image

Automatically done by FEAT GUI (some user control) Need to manually run brain extraction (not on EPI usually*)

Registration for FMRI Analysis (FEAT)

e o	 FEAT - FMRI Expert Analysis Tool v5.97 First-level analysis - Full analysis - Data Pre-stats Stats Post-stats Registration 	FMRI (implicit)
•	Initial structural image Main structural image structural_brain Linear Normal search = 6 DOF =	Main Structural
-	Standard space /usr/local/fsl/data/standard/MNI152_T1_2mm_brain Linear Normal search - 12 DOF - Nonlinear Warp resolution (mm) 10 =	FLIRT + FNIRT Standard
Go	o Save Load Exit Help Utils	

NB: actually need brain extracted **and** original images for FNIRT

MNI Space

top line = fmri in grey + red lines from structural) space: top line = fmri in grey + red lines from structural bottom line = structural in grey + red lines from fmri Also: fsleyes highres example_func2highres (in reg subdirectory of feat directory)

Highres (structural) in standard space (MNI) top line = structural in grey + red lines from MNI bottom line = MNI in grey + red lines from structural Also: fsleyes standard highres2standard

Example func (fmri) in standard space (MNI) top line = fmri in grey + red lines from MNI bottom line = MNI in grey + red lines from fmri Also: fsleyes standard example_func2standard

Registration: Single-Stage and Multi-Stage Applications

Summary:

- Preliminary processing using reorientation, brain extraction and artefact correction (e.g. bias field)
- Single-stage for structural images: choose spatial transformation, cost function
- Important to **visually check** results!
- Multi-stage for multiple modalities/spaces
- Each stage benefits from fewer differences
- Evaluate results for each stage (and combined)