

Registration: Cost Functions, Interpolation and Masks

Basic Registration Concepts

Need to understand:

- Image "spaces"
- Spatial Transformations
- Cost Functions
- Interpolation

Basic Registration Concepts

Need to understand:

- Image "spaces"
- Spatial Transformations
- Cost Functions
- Interpolation

Cost Function

Measures "goodness" of alignment Seek the minimum value Several main varieties

Similarity function is opposite (maximum sought)

FLIRT: Cost Functions

FMRIB's Linear Image Registration Tool

FLIRT: Cost Functions

Important: Allowable image modalities

Less important: Details

Least Squares	Same modality (exact sequence parameters)
Normalised Correlation	Same modality (can change brightness & contrast)
Correlation Ratio	Any MR modalities
Mutual Information	Any modalities (including CT, PET, etc.)
Normalised Mutual Info.	Any modalities (including CT, PET, etc.)
BBR	Within-subject EPI to structural (see later)

FNIRT: Cost Functions

FMRIB's Non-linear Image Registration Tool

BS

FNIRT: Cost Functions

• Only uses Least Squares as cost function

so images must be of the same modality/sequence

- Also includes an explicit model for bias field (RF inhomog.)
- Estimate displacement field <u>and</u> RF bias field together
- Options exist to control bias field (turn off/on, smoothness)

Without RF modelling

Template

With RF modelling

Basic Registration Concepts

Need to understand:

- Image "spaces"
- Spatial Transformations
- Cost Functions
- Interpolation

Finds intensity values between grid points

Various types include

- Nearest Neighbour
- Trilinear
- Spline
- Sinc
- k-Space methods

Fast, but blocky - can be used for discrete labels

Finds intensity values between grid points

Various types include

- Nearest Neighbour
- Trilinear
- Spline
- Sinc
- k-Space methods

Fast, with some blurring - most common option

Finds intensity values between grid points

Various types include

- Nearest Neighbour
- Trilinear
- Spline
- Sinc
- k-Space methods

Slower (spline is fairly fast) - creates sharp images but can create values outside the original range

Nearest Neighbour

Trilinear

Spline

Affects accuracy of subsequent analysis Important for *quantitative imaging* Can affect size of artefacts

Applying Transformations

- Step I: Estimating a transformation
 - finding the transformation
 - no resampling

Applying Transformations

- Step I: Estimating a transformation
 - finding the transformation
 - no resampling
- Step 2: Resampling
 - applying a transformation
 - thus creating a new, modified image
- "Registration" can mean either
- Usually delay resampling as it reduces image quality
- Other terms: coregistration & spatial normalisation

Transforming Masks

Mask values are normally 0 and 1 (integer format) Interpolation gives values in between if rounded to integer \leftarrow mask "shrinks"

Ensure output datatype = float (applywarp & flirt default) Re-threshold (binarize) the transformed mask

"Correct" thresholding depends on the particular case Threshold near 0.0 to include partial-volume edges Threshold near 1.0 to exclude partial-volume edges Threshold at 0.5 to keep the same size (approx)

Transforming Masks

0.1 Threshold 0.5 Threshold

Registration: Cost Functions, Interpolation and Masks

Summary:

- Must choose an appropriate cost function
- Often many valid choices (depends on images)
- Interpolation used to resample images
- Often the interpolation is set within the tool
- When applying transforms want to minimise interpolation-related effects delay resampling
- Transforming masks requires attention to interpolation and thresholding - depends on task