

Network modeling analysis

- Resting state preprocessing
- Node definition and edge calculation
- Group analysis and challenges
- Comparison of resting state methods

Node-based methods

Bijsterbosch et al (2017)

- Node definition
- **Timeseries extraction**
 - Edge calculation
 - Network matrix
 - Group analysis

Node definition

Node nomenclature

<u>Node</u> = fundamental processing unit

Parcel = node derived from a brain parcellation

<u>Region of interest (ROI)</u> = node in different contexts (seed-based correlation/ task analysis)

<u>Cortical Area</u> = region of cortex distinct from neighboring cortex in function, cytoarchitecture, connectivity, or topographic organization

Eickhoff et al (2018)

<u>Network</u> = collection of things

- 1. All nodes and edges of the brain ("network neuroscience")
- 2. A subset of inter-connected nodes (modules)
- 3. Macroscale systems of the brain (resting state networks; RSNs)

Node characteristics

<u>Non-contiguous</u> = fits with hemispherical symmetry and hierarchical structure

Bijsterbosch et al (2017)

<u>Contiguous</u> = intuitive and consistent with cortical areas

Node characteristics

Bijsterbosch et al (2017), Glasser et al (2016)

<u>Binary (hard parcellation) = intuitive for graph</u> representations and interpretation

<u>Weighted (soft parcellation)</u> = fits with complex brain organization and allows for measurement error and physiological limits (HRF)

Node definition

Anatomical atlases

Functional atlases

- Harvard-Oxford/ AAL
- Avoid if possible because typically based on small number of subjects and not a good estimation of functional boundaries

- How to map onto individuals is very important

Tzourio-Mazoyer et al (2002), Yeo et al (2011), Glasser et al (2016), Cohen et al (2008)

Yeo 2011/ Glasser 2016 Many good functional atlases available, though few comparison studies

Data-driven parcellation

- ICA/ Clustering/ Gradients
- Estimate parcellation from ulletthe same dataset used for further analyses
- How to map group parcellation onto individuals very important

Your own versus literature

Functional atlas

Many good quality atlases available in literature

Easy to interpret and relate to other findings

May not be optimally matched your (patient) data

Data-driven paracellation

Use your own data to estimate your nodes

Interpretation and comparison to the literature can be hard

Best representation of the organization in your data

ICA for parcellation

Timeseries extraction

Hard parcellation:

- Masking (mean timeseries)
- Eigen timeseries (PCA)
- Using multilayer classifier

ICA (soft parcellation):

Dual regression/ back projection \bullet

Alternative:

- Hierarchical estimation of group & subject
- e.g. PROFUMO

Hacker et al (2013), Nickerson et al (2017), Calhoun et al (2001), Harrison et al (2020), Bijsterbosch et al (2017)

Edge estimation

Edge calculation

Presence/ absence of edges

Strength of edges

• Directionality of edges

Direct versus indirect connections

- Correlation between 2 and 3 will exist
- Therefore full correlation will incorrectly estimate connection 2-3
- 2-3 is an indirect connection

Partial correlation

- Before correlating 2 and 3, first regress 1 out of both ("orthogonalise wrt 1")
 If 2 and 3 are still correlated a direct
 - If 2 and 3 are still correlated, a direct connection exists
- More generally, first regress all other nodes' timecourses out of the pair in question
 - Equivalent to the inverse covariance matrix

Regularisation

- Urgh! If you have 200 nodes and 100 timepoints, this is impossible!
- A problem of DoF need large #timepoints #nodes
- When inverting a "rank-deficient" matrix it is common to aid this with some mathematical conditioning, e.g. force it to be sparse (force low values that are poorly estimated to zero)
- Regularised partial correlation (such as ICOV, Ridge)
- But still important to maximise temporal degrees of freedom

Need to carefully define nodes

Berkson's paradox = false positive (2-3)

Over-splitting = false negative (1-2)

Directionality of edges

- Directionality is hard to estimate in BOLD data
- Don't use lag-based methods such as Granger causality
- Perhaps directionality is oversimplistic view of neural connectivity (particularly in resting-state)?

<u>Smith et al (2011)</u>

Resources

- FSL mailing list
- Book (<u>Amazon</u>/ <u>OUP</u>) \bullet
- All references on the bottom of slides contain 'clickable' links

OXFORD NEUROIMAGING PRIMERS

Introduction to **Resting State fMRI Functional Connectivity**

Janine Bijsterbosch Stephen Smith Christian Beckmann

Series editors: Mark Jenkinson and Michael Chappell

OXFORD