FSL-MRS – Tools for Magnetic Resonance Spectroscopy

Quality Control (QC) metrics

Linewidth

Signal-to-noise ratio (SNR)

Width of peak at half maximum

Height of peak / noise standard deviation

QC metrics: linewidth

Increasing linewidth decreases the separability of spectral peaks => greater correlation between fitted concentrations => greater uncertainty.

Comparable between studies/sites and consistently given as FWHM, <u>but</u> beware which peak used.

QC metrics: SNR

Many definitions of SNR are used. How do you measure signal? Noise?

- Noise: End of FID, spectral residual after fitting, signal-free spectral region, real/complex?
- Signal: First point of FID, a metabolite peak (which one? multiplet shape?), do you apply filtering first?

Compare apples with apples, not apples with poorly defined numbers from the literature.

Fit quality metrics

Cramér–Rao lower bound (CRLB)

<u>Estimated</u> and <u>best possible</u> uncertainty (standard deviation) in metabolite concentrations due to:

thermal noise, and
peak overlap

but not artifacts.

Metab	mMol/kg	CRLB	%CRLB	/Cr+PCr
Ala	0.4	0.23	58.4	0.04
Asc	4.03	0.35	8.7	0.37
Asp	2.11	0.67	31.9	0.19
Cr	6.08	0.43	7	0.56
GABA	0	0.39	999	0
GPC	3.34	0.15	4.5	0.31
GSH	1.92	0.18	9.4	0.18
Glc	1.06	0.39	36.3	0.1
Gln	1.14	0.35	31	0.11
Glu	6.26	0.34	5.4	0.57
Ins	14.28	0.29	2	1.31
Lac	1.91	0.23	12	0.17
Мас	13.96	0.76	5.4	1.28
NAA	10.76	0.26	2.5	0.99
NAAG	4.28	0.18	4.2	0.39
PCho	0.87	0.16	18.4	0.08
PCr	4.82	0.41	8.5	0.44
PE	0.27	0.5	182.1	0.02
Tau	2.2	0.3	13.8	0.2
sIns	0.5	0.07	14.8	0.05
Cr+PCr	10.9	0.25	2.3	1
NAA+NAAG	15.04	0.28	1.9	1.38
GPC+PCho	4.21	0.11	2.6	0.39
Glc+Tau	3.26	0.3	9.2	0.3

Relative vs. Absolute CRLB

Magnetic Resonance in Medicine

ISMRM

Mini-Review 🔂 Free Access

The trouble with quality filtering based on relative Cramér-Rao lower bounds HGS, all data

Roland Kreis 🔀

First published: 06 March 2015 | https://doi.org/10.1002/mrm.25568

Filtering data using relative CRLB (measured as percentage of concentration) can bias your results by excluding mostly low concentrations. Use absolute values!

Good fit

SNR: 38; FWHM: 5.4 Hz tNAA: 1.5% Glx: 4.0% Ins: 5.8%

Examples of fits

Low SNR

SNR: 8 FWHM: 5.6 Hz tNAA: 6.9% (x 4.6) Glx: 15.8% (x 4.0) Ins: 19.1% (x 3.3)

Examples of fits

Examples of fits

Poor linewidth

SNR: 23 FWHM: 11.1 Hz tNAA: 2.4% (x 1.6) Glx: 4.6% (x 1.2) Ins: 8.9% (x 1.5)

Eddy currents

SNR: 47 FWHM: 7.8 Hz tNAA: 3.4% (x 2.3) Glx: 11.5% (x 2.9) Ins: 11.2% (x 1.9)

SNR: 73;

tNAA: 1.0% Glx: 2.9% Ins: 3.8%

Residual water

Residual water

Lipids

CRLB validity

CRLB <u>not</u> reliable when model does not represent data.

CRLB of metabolites still "reasonable" in this example.

RESEARCH ARTICLE 🛛 🔂 Full Access

Are Cramér-Rao lower bounds an accurate estimate for standard deviations in in vivo magnetic resonance spectroscopy?

Karl Landheer, Christoph Juchem 🔀

First published: 19 April 2021 | https://doi.org/10.1002/nbm.4521 | Citations: 6

Deciding cut-offs

Comparison with literature: linewidths, possibly SNR and CRLB

SPECIAL ISSUE REVIEW ARTICLE | 🔂 Full Access

B₀ shimming for in vivo magnetic resonance spectroscopy: Experts' consensus recommendations

Christoph Juchem 🔀, Cristina Cudalbu, Robin A. de Graaf, Rolf Gruetter, Anke Henning, Hoby P. Hetherington, Vincent O. Boer

First published: 28 June 2020 | https://doi.org/10.1002/nbm.4350 | Citations: 30

Comparison with study population: linewidths, SNR and/or absolute CRLB

Exclude data based on comparing QC/fit metrics with study population or equivalent study population.

FSL-MRS outputs

MCMC marginal distributions (ref=Cr+PCr)

Approximate marginal distributions (ref=Cr+PCr)

Metab	mMol/kg	CRLB	%CRLB	/Cr+PCr
Ala	0.4	0.23	58.4	0.04
Asc	4.03	0.35	8.7	0.37
Asp	2.11	0.67	31.9	0.19
Cr	6.08	0.43	7	0.56
GABA	0	0.39	999	0
GPC	3.34	0.15	4.5	0.31
GSH	1.92	0.18	9.4	0.18
Glc	1.06	0.39	36.3	0.1
Gln	1.14	0.35	31	0.11
Glu	6.26	0.34	5.4	0.57
Ins	14.28	0.29	2	1.31
Lac	1.91	0.23	12	0.17
Mac	13.96	0.76	5.4	1.28
NAA	10.76	0.26	2.5	0.99
NAAG	4.28	0.18	4.2	0.39
PCho	0.87	0.16	18.4	0.08
PCr	4.82	0.41	8.5	0.44
PE	0.27	0.5	182.1	0.02
Tau	2.2	0.3	13.8	0.2
sIns	0.5	0.07	14.8	0.05
Cr+PCr	10.9	0.25	2.3	1
NAA+NAAG	15.04	0.28	1.9	1.38
GPC+PCho	4.21	0.11	2.6	0.39
Glc+Tau	3.26	0.3	9.2	0.3

QC parameters

Metab	SNR	FWHM (Hz)
Ala	0.6	24.8
Asc	5.3	19.7
Asp	0.9	70.0
Cr	17.7	14.2
GABA	0.0	0.0
GPC	29.0	14.2
GSH	4.2	17.3
Glc	1.0	40.4
Gln	1.1	27.9
Glu	7.0	24.3
Ins	20.2	46.7

QC and fit quality (CRLB) metrics are given in the summary.csv, qc.csv and concentrations.csv outputs as well.

