

Advanced preprocessing

- Motion artefact correction
- Physiological noise correction

Case Study: Motion Artefacts

Scenario:

Young/elderly/sick subjects that move a lot during an FMRI study

Problem:

Motion correction does not fully correct for excessive motion

Sudden motion creates massive distortion (>12 DOF) Smaller, slower motion induces intensity changes due to physics effects (e.g. spin history) and interpolation

Solution:

Remove or compensate for motion artefacts

Motion Artefact Correction

Options for motion artefact correction:

- I. Add motion parameters as confound EVs
- 2. Detect "outlier" timepoints and remove them via confound EVs
- 3. Use ICA (MELODIC) denoising for cleanup

Without motion parameter EVs

With motion parameter EVs

Motion Parameter Confounds

Add the 6 parameters (rotations and translations) as measured by MCFLIRT to the GLM as *confounds* - simple button in FEAT

- Removes any correlated signals (since they are confounds)
- Assumes a linear relationship between motion parameters and intensity of motion artefact
- Also possible to include non-linear (e.g. squared) parameters
- Assumes that MCFLIRT estimation is accurate
- Problematic if motion parameters and EVs of interest are highly correlated (stimulus-correlated motion)
 - can result in loss of activation
 - orthogonalising EVs does not change result

Outlier Timepoint Detection

Use fsl_motion_outliers to detect timepoints that display large intensity differences to the reference timepoint (after motion correction)

- Removes **all** influence of the timepoints declared as outliers but does not introduce any bias (unlike "deleting" timepoints from data)
- Uses one extra confound regressor per outlier timepoint
 - the regressor is zero at all timepoints except the outlier
- Implemented via confound matrix in the GLM
 - Add additional confound EVs button in FEAT
- Does not assume that MCFLIRT is accurate or that the effect is linear
- Can cope with very extreme motion effects but leaves other timepoints uncorrected
- Can be combined with other correction methods

Confound matrix with 2 outlier timepoints

ICA denoising

Use ICA (MELODIC) on individual runs to identify components related to motion artefacts and remove these from the 4D data

- Requires identification of components
 - manual classification
 - (semi-) automated classification (FIX/ AROMA)
- Can also be combined with other cleanup techniques
 - ICA denoising should be done first
- Can also be used to identify and remove structured noise that is not related to motion

ICA denoising

- Typical motion components display ringing around brain edge
- Can also note sharp effects in timecourses
- There are typically a large number of noise components (70-90%)

Classic motion

White matter

Multiband motion

Sagittal sinus

Susceptibility motion

Cardiac/CSF

Case Study: Physiological Noise Correction

Scenario:

FMRI study of the brainstem

Problem:

High levels of pulsatility and respiratory effects in the brainstem and in other inferior areas

Solution:

Use Physiological Noise Model (PNM) to correct for physiological noise Requires independent physiological measurements

Physiological Measurements

Need to measure cardiac and respiratory cycles.

Several options available - the easiest are:

Respiratory Bellows

Pulse Oximeter

Also **record scanner triggers** from the scanner console

Triggers are essential for accurate timing over the course of the experiment. Beware of standard scanner recordings and timing drift or rescalings.

Location of Effects

Cardiac effects typically occur:
near vessels and areas of CSF pulsatility (e.g. brainstem, ventricles)

Cardiac

Respiratory effects typically occur:

- in inferior areas (where the induced B0 field changes due to lung volume changes are highest)
- near image edges (due to geometric shifts/distortion by B0 causing large intensity changes)
- throughout the grey matter (due to oxygenation changes)

Respiratory

Bright & Murphy, NeuroImage, 2013

PNM

Physiological Noise Model (GUI)

Input Input Input Physiological Recordings Input TimeSeries (4D) Column number of data Cardiac 4 Pulse Ox Triggers Sampling Rate (Hz) 200 TR (sec)	Requires text file with physiological recordings (cardiac, respiratory, triggers)
Slice Order: ◆ Up <> Down <> Interleaved Up <> Interleaved Down Output Output Basename EVs Image: Slice Cardiac EVs Order for Cardiac EVs 4 € Order for Respiratory EVs 4 € Order for Cardiac Interaction EVs 0 € Order for Respiratory Interaction EVs 0 €	Peak detection in physiological trace needs manual checking via webpage
RVT HeartRate CSF mask > Advanced Options Go Exit	50

PNM

OOO		X PNM	
Input Phy	/siological Recordings		
Input Tim	neSeries (4D)		
Column	number of data: Cardia	c 4 🚔 Respiratory 2	🖨 Scanner triggers 🛛 🚔
🗆 Pu	lse Ox Triggers	Sampling Rate (Hz) 200 🛔	TR (sec) 3
Slice Or	der: 🔸 Up 💠 Dow	vn 💠 Interleaved Up 💠	Interleaved Down
Output-			
Output B	asename		
-EVs			
Order fo	or Cardiac EVs	4 🚔	
Order fo	or Respiratory EVs	4 🛢	
Order fo	or Cardiac Interaction E	:Vs 🛛 🛢	
Order fo	r Respiratory Interactio	on EVs 🛛	
🗆 RV	T 🔄 Heart	Rate 💷 CSF	
CSF mas			
▷ Advance	ced Options		
	Go	Exit	Help
			/

IFSIL

Need to specify what type of corrections:

- Fourier series (harmonics / shape)
- Interactions (resp x cardiac)
- NB: higher orders = better fit to shape, but many more EVs and so less DOF

- RVT (resp volume per time)

- HeartRate

- CSF

Use in FEAT

S FEAT - FMRI Expert Analysis Tool v6.00		
First-level analysis – Full analysis – Misc Data Pre-stats Stats Post-stats Registration	PNM GUI creates a set of files suitable for	
Use FILM prewhitening	use as Voxelwise	
Don't Add Motion Parameters 🛁	Confounds in FEAT	
Voxelwise Confound List		
□ Add additional confound EVs		
Model setup wizard		
Full model setup		
Go Save Los		

Results: Pain-punctate arm

AXIAL

N=6, Group mean (Fixed effects), Z=1.8 p<0.05

CORONAL

With PNM – Without PNM – Both –

Courtesy of Jon Brooks - University of Bristol

Advanced preprocessing summary

Options for motion artefact correction:

- I. Add motion parameters as confound EVs
- 2. Detect outliers (fsl_motion outliers) and remove them via confound EVs
- 3. ICA-based cleanup

Options for **physiological noise correction**:

- I. ICA-based cleanup
- 2. Physiological recordings + PNM + voxelwise confound EVs