Inference

how surprising is your statistic! (thresholding)




Qutline

Null-hypothesis and Null-distribution
Multiple comparisons and Family-wise error
Different ways of being surprised

® Voxel-wise inference (Maximum z)

® (Cluster-wise inference (Maximum size)
Parametric vs non-parametric tests
Enhanced clusters

FDR - False Discovery Rate



Parametric vs non-parametric

® As we described earlier, one of the
great things about for example the
t-test is that we know the null-
distribution

-5 0 5
Provided that e ~ N(0,02)

® But most distributions are not that |\
simple e

distributed

® And errors are not always normal- i i



Example:VBM-style analysis

Our data is segmented grey matter maps

A voxel is either grey matter, or not.

Group #l| Group #2
(Oxford students) (Train spotters)
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Parametric vs non-parametric

® There are approximations to the
Max-z and Max-size statistics

® J[hese are valid under certain sets

of assumptions

® But can be a problem when applie
outside of that set of assumptions
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® “High enough”

threshold

Search area “large relative to

cluster forming
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Cluster failure: Why fMRI inferences for spatial extent
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The most widely used task functional magnetic resonance imaging
(fMRI) ) use p. i isti t

s that depend on a
variety of assumptions. In this work, we use real resting-state data

and a total of 3 million random task group analyses to compute
empirical familywise error rates for the fMRI software packages SPM,

(FWE), the chance of one or more false positives, and empirically
measure the FWE as the proportion of analyses that give rise to
any significant results. Here, we consider both two-sample and
one-sample designs. Because two groups of subjects are randomly
drawn from a large group of healthy controls, the null hypothesis
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Parametric vs non-parametric

TEAN AT ATATIN T

® Those approximations were based == R,
on Gaussian Random Field Theory, =~ =ooc o =
and was an impressive body of work =" o e

® They served us fantastically well at a
time when we had little choice

® But the future is non-parametric




Parametric vs non-parametric
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A simple permutation test

We can permute the data itself to create a distribution
that we can use to test our statistic.

+ Makes very few assumptions about the data

+ Works for any test statistic

We have performed an And calculated a statistic,
experiment e.g.a f-value

3} t=2.727

If the null-hypothesis is true, there is no
difference between the groups. That
means we should be able to “re-label”
the individual points without changing

l 2 anything.
Group #
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A simple permutation test

We can permute the data itself to create a distribution
that we can use to test our statistic.

+ Makes very few assumptions about the data

+ Works for any test statistic

One re-labelling t-value after re-labelling
2f ; § Original
13 : / labelling
0 I 2 -5 0. - H

Group #

Let’s start collecting them



A simple permutation test

We can permute the data itself to create a distribution
that we can use to test our statistic.

+ Makes very few assumptions about the data

+ Works for any test statistic

Second re-labelling t-value after re-labelling

3| t=1.97
Original

/ labelling
0 m__mm

I 2 -b 0 H
Group #

0 MDeoe O
> DO OoS O

And another one



A simple permutation test

*  We can permute the data itself to create a distribution
that we can use to test our statistic.

+ Makes very few assumptions about the data

+ Works for any test statistic

Of the 5000 re-labellings, only 90 had a t-
value > 2.27 (the original labelling).

l.e. there is only a ~1.8% (90/5000) chance
of obtaining a value > 2.27 if there is no Original

difference between the groups I / labelling

C.h.p(x>2.27) = 1.79% for {4
5000 re-labellings. Phew!




And we can use this for any statistic

This is what we got
We compared activation Very intriguing
by painful stimuli in two activation. lg = 4.65

groups of 5 subjects
each.

But, can we trust it?



And we can use this for any statistic

This is what we got

We compared activation Very intriguing

by painful stimuli in two activation. lg = 4.65

groups of 5 subjects

each. But, can we trust it?
H/max(t)=4.65

2nd level Our group
model difference map




And we can use this for any statistic

This is what we got

We compared activation Very intriguing

by painful stimuli in two activation. lg = 4.65
groups of 5 subjects

each. But, can we trust it?
E E/max(t)=8.23

Permuted Permuted group
model difference map




And we can use this for any statistic

This is what we got

We compared activation Very intriguing

by painful stimuli in two activation. lg = 4.65
groups of 5 subjects

each. But, can we trust it?
E H/ma)((t) N

2nd permuted
Permutatlon map




And we can use this for any statistic

This is what we got
We compared activation Very intriguing
by painful stimuli in two activation. lg = 4.65

groups of 5 subjects
each.

But, can we trust it?

max({)=5.84

3rd permuted
Permutation map



And we can use this for any statistic

This is what we got
We compared activation
by painful stimuli in two

groups of 5 subjects
each.

Very intriguing
activation. Ig = 4.65

But, can we trust it?

Original

labelling
/

3925 permutations
yielded higher
max(t)-value than
original labelling.
- We cannot reject
the null-hypothesis.

5000 permutations



But beware the “exchangeability”

® When we swap the labels of two data-points we need to
make sure that they are “exchangeable”

® | will start to explain “exchangeability” through a case
that is not

® But first we need to learn about covariance matrices

. Height and weight
i, PU of a random
Bttt % sample of Swedish

men
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Covariance matrices

® When we swap the labels of two data-points we need to
make sure that they are “exchangeable”

® | will start to explain “exchangeability” through a case
that is not

® But first we need to learn about covariance matrices

Mean height = 18] cm

AT Characterised
¥¥ecn i Mean weight ®79.4 kg by two means
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Covariance matrices

® When we swap the labels of two data-points we need to
make sure that they are “exchangeable”

® | will start to explain “exchangeability” through a case
that is not

® But first we need to learn about covariance matrices

130 52 | Anda
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Covariance matrices

® When we swap the labels of two data-points we need to
make sure that they are “exchangeable”

® | will start to explain “exchangeability” through a case
that is not

® But first we need to learn about covariance matrices

130 52 4.8
STt Y= 52 165 69
s 48 69 156

50 70 a0 116
Weight (kg)



Covariance matrices

® When we swap the labels of two data-points we need to
make sure that they are “exchangeable”

® | will start to explain “exchangeability” through a case
that is not

® But first we need to learn about covariance matrices
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| st level fMRI data is not exchangeable

® You may, or may not, have seen this slide in the |st level
GLM talk.

Regressor, Regression parameters,
Explanatory Variable (EV) Effect sizes
X1 Xg_
> This time we will

look more closely

] ] at this part
— b1 | + /
P2 e ~ N(0,X)

;

E _ Our old friend “the
Yy = X g + € covariance matrix”’

Data from . . Gaussian noise
Design Matrix :
a voxel (temporal autocorrelation)




| st level fMRI data is not exchangeable

® One important component of noise in fMRI consists of
physiological/neuronal events convolved by the HRF

05 I | |

_0_ 5 | | |
0 50 100 150 200 250 300

Time (sec)



| st level fMRI data is not exchangeable

® One important component of noise in fMRI consists of
physiological/neuronal events convolved by the HRF

05 | | |

U g %
| |
100 150 250 300
Time (sec)
/ | | l
; ,-.-"‘\.‘\ A ;.f.\'
v 7 \':,
_05 | | | |
0 5 10 15 20 25 30 35 40 45 50
Sample (#)

If we sample this every 20 seconds it no longer looks “smooth”



| st level fMRI data is not exchangeable

® One important component of noise in fMRI consists of
physiological/neuronal events convolved by the HRF

05 I | | |

_05 | | | |
0 5 10 15 20 25 30 35 40 45 50

Sample (#)

Variance Variance
at point |  at point 2 2

<

e ~ N(0,0°I)



| st level fMRI data is not exchangeable

® One important component of noise in fMRI consists of
physiological/neuronal events convolved by the HRF

05 | | |

|
50 100 150 200 250 300
Time (sec)
0.5 \ X I I I \
0 _#M v'.'/ \\\,J'. Zata ../’,/ \.,'\-\. ;;_,' '-\..\.\ S ey £ /’) it V/_," ol \‘.\ . ' /'/, J
! f./.-’ * ' 2 o 'x.“'\ R ¢
_0. 5 | | | |
0 5 10 15 20 25 30 35 40 45 50
Sample (#)

But that is not a realistic TR.What about every 3 seconds!?



| st level fMRI data is not exchangeable

® One important component of noise in fMRI consists of
physiological/neuronal events convolved by the HRF

05 I | | |

_05 | | | |
0 5 10 15 20 25 30 35 40 45 50

. . Sample (#)
Variance Variance

at point |  at point 2
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| st level fMRI data is not exchangeable

® | et us now return to our model again

® [he model consists

Regressor, Regression parameters,
Explanatory Variable (EV) Effect sizes Of our regressors x
\ .
. X1 Xo_ and the noise model
e~ N(0,%)
] ] ® All permutations
_ 51 must result in
D2 “equivalent models”
® | et us now see what
i i happens if we swap

y = X g + e two data-points

Data from . . Gaussian noise o
a voxel Design Matrix (temporal autocorrelation) (pOIntS 5and | O)



| st level fMRI data is not exchangeable

® One important component of noise in fMRI consists of
physiological/neuronal events convolved by the HRF

05 I | | |

0 5 10 15 20 25 30 35 40 45 50

cim s Sample (#)
Point” 10 now

covaries with

And the models
are no longer
equivalent




| st level fMRI data is not exchangeable

® One important component of noise in fMRI consists of
physiological/neuronal events convolved by the HRF

0.5 I

-0.5 :

And for a random
permutation ...

20

25 30 35 40 45 50
Sample (#)

And the models
are no longer
equivalent



Back to exchangeability

Data-points are not “exchangeable” if swapping them
means that the noise covariance-matrix ends up looking
different.

Formally we say that “The joint distribution of the data
must be unchanged by the permutations under the null-
hypothesis”.

If the noise covariance-matrix has non-zero off-diagonal
elements (covariances) you need to beware.

You typically never estimate or see the covariance-
matrix. You need to “imagine it” and determine from that
if there is a problem.



Examples of exchangeability:
Two groups unpaired

P00 I\ Gerwes Lines: Mode

FVs y Contrasts & l'-testsl

Munber ez =vs |£ %
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This is the “exchangeability
group’. Here all scans are
in the same group, which

means any scan can be
exchanged for any other.
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c groupg B X gooup A
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N.B.The “group” labelling
is used for completely

different purposes when
using FLAME/GRFT




Examples of exchangeability:
Two groups unpaired

D O N Gerera Lines:: Mode
FVs ] Contrasts & I'-teatsl

Munbur e =vs |£ %

Munber ¢ ac:il ang |, voxe -c2pe dent =vs |1 —
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)
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1
I
1
il
1
1
1
L

op 2 p D

C YL aup A yruup B 1 1
c p B > gooup A 1 1l

Assumed covariance matrix

The implicit assumption
here is that data from all
subjects have the same
uncertainty and are all
independent



Examples of exchangeability:
Two groups unpaired

P00 @ [N\ Gerwea Lines:: Mode
FVs I Contrasts & I'-teatsl

I — Original Perm | Perm 2 ...
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Examples of exchangeability:
Two groups unpaired

i Original Perm | Perm 2 Perm-3

= m
T =2l == 5 - 2
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N.B. Equivalent



Examples of exchangeability:
Single group average

Senera .inear Moce

EVs | Contrasts & I'-tests]

Pl ol inzir Fus |1 -

Fleslie of 2l sl s clzpereel B DS

it [E [E Here we model a single
S mean and want to know if
e (5[ that is different from zero
w5
* But there isn’t really
00 ® xmu anything to permute, or
is there?

group &
Gl Awg activotion 1



Examples of exchangeability:
Single group average
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Examples of exchangeability:
Single group average

N Senera .inear Moce

EVs | Contrasts & I'-te:ns]
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Examples of exchangeability:
Single group average

N Senera .inear Moce
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Examples of exchangeability:
Single group average
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EVs ‘ Contrasts & I'-tests}

Examples of exchangeability:

Pl ol inzie Fys |1 -

Fleslie of 2l sl s clzpereel B DS

Pasle

P HTVR

:\(f 1

Single group average

JrCLE A
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Inpt C — I
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v

el o )

(]
]
F =
prs

® '\ Model

And the assumptions are:

® Symmetric errors
® Errors independent

® Subjects drawn from a single population



Examples of exchangeability:
Two groups paired

®-S [x Ceneral Linear Mocel
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Examples of exchangeability:

Two groups paired
e Assumed covariance matrix

harae:of nair Fvs (i 3
Foonxe ol ade desad, vassl depone e B IJ %
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The implicit assumption here

- is that data from all subjects
have the same uncertainty
and that there is no

3 dependence between subjects

nt re



Examples of exchangeability:

Two groups paired
e Assumed covariance matrix
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have the same uncertainty
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Examples of exchangeability:
Two groups paired
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Exam
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blocked ANOVA
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Examples of exchangeability:
blocked ANOVA
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Assumptions: All subjects
from the same “population”,
no dependence between
subjects and “compound
symmetry” within subjects
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My advice: Keep it simple!

Each subject
scanned like this

L NN X Modsl

We want to find areas that
respond “linearly” to pain.

bl b Fa it B "t N -n
-1l Liztlc pota 1 0 0 0
22 HN._w p=in = 1 0 0

A L==an
-4 Uzch = 0 0

Taking 4 contrasts
to 2nd level



My advice: Keep it simple!

Each subject
scanned like this

X! Modsl

4 ch = 0 0

Taking 4 contrasts
to 2nd level

Repeatlng this for four subjects

hbkbwwwwwmwwr—tv—tu—tr—t.

Cl Linear Pain

'X| Model

Pa1n2>1 Pa1n3>2 Pa1n4>3 Subjl Sub]2 Sub]3 Sub]4



My advice: Keep it simple!

| NON X Model
1
1 o R
1 |
2
2
2
2
3
3
3
3
4
4
4 You have to assume
4 ° ° °
Pa1n2>1 Pa1n3>2 Pa1n4>3 SU.b]l Su.b]2 Sub]3 Subjdl thls Covarlance matrlx
Cl Linear Pain
And figure out this
5 Why put yourself
contrast

through all that pain?



My advice: Keep it simple!

And get this at the

second level
® O © [X Model

09 N Model

1
1
1
1

Linear Paa
Cl Linear Pain 1

Assuming only
i v o symmetric errors

21 Linear pada -z -1

When you can take a
single contrast from Much nicer, no!?
the first level



Warning pertaining to FSL 6.0.1

o0® % Model...

® \ FEZAT - FMRI Expart Analysis Tool v6.00
Higher-lavel analysls — | Statstes — | ~ Single group average
Misc | Data| ] StatSI Post-stats | ~ WO groups, UnpairEd
Random s —alPe'm.,Lali:naISIDE = N 0D g]"(:]l.,lpsJ pairEd

1 Use suomalc o tller de+wve g~ti~g

Modzl setun wizerd

Process

F.l moczel sctup

Do not use the Model setup
Go | save Losd | Ext | dep | Lus wizard together with

Randomise in FSL 6.0. 1




