
Inference 
how surprising is your statistic? (thresholding)

But ... can I 
trust it?



Outline

• Null-hypothesis and Null-distribution

• Multiple comparisons and Family-wise error

• Different ways of being surprised

• Voxel-wise inference (Maximum z)

• Cluster-wise inference (Maximum size)

• Parametric vs non-parametric tests

• Enhanced clusters

• FDR - False Discovery Rate
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The task of classical 
inference

• Given some data we want to know if (e.g.) a mean is 
different from zero or if two means are different

Different?> 0 ?



Tools of classical 
inference

A null-hypothesis

Typically the opposite of what we actually “hope”, e.g.

There is no effect of 
treatment: μ = 0

There is no difference 
between groups: μ1 = μ2

1.



A null-hypothesis
A test-statistic

Assesses “trustworthiness”

Trustworthy

Dodgy

Tools of classical 
inference

1.
2.



A t-statistic reflects precisely this
Large difference: 

Trustworthy

Small variability: 
TrustworthyMany measurements: 

Trustworthy

Tools of classical 
inference
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A null-hypothesis
A test-statistic

Or expressed in GLM lingo

Large difference: 
Trustworthy

Small variability: 
Trustworthy

Many measurements: 
Trustworthy
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A null-hypothesis
A test-statistic
A null-distribution

We might then get these data

Constant

Tools of classical 
inference
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Let us assume there is no 
difference, i.e. the  

null-hypothesis is true.
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A null-hypothesis
A test-statistic
A null-distribution

or we could have gotten these

Tools of classical 
inference
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A null-hypothesis
A test-statistic
A null-distribution

maybe these

Tools of classical 
inference
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A null-hypothesis
A test-statistic
A null-distribution

or perhaps these
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A null-hypothesis
A test-statistic
A null-distribution

etc

Tools of classical 
inference
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A null-hypothesis
A test-statistic
A null-distribution

Tools of classical 
inference
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And if we do this til 
the cows come 

home
t



A null-hypothesis
A test-statistic
A null-distribution

Tools of classical 
inference
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t

So, why is this 
helpful?



A null-hypothesis
A test-statistic
A null-distribution

Tools of classical 
inference

1.
2.
3.

t

Well, it for example tells 
us that in ~1% of the 
cases t > 3.00, even 

when the null-hypothesis 
is true.



A null-hypothesis
A test-statistic
A null-distribution

Tools of classical 
inference

1.
2.
3.

t

Or that in ~5% of the 
cases t > 1.99. 
When the null-

hypothesis is true.



A null-hypothesis
A test-statistic
A null-distribution

Tools of classical 
inference

1.
2.
3.

And best of all: This 
distribution is 

known i.e. one can 
calculate it.  

Much as one can 
calculate sine or 

cosine

t8

t



A null-hypothesis
A test-statistic
A null-distribution

Tools of classical 
inference

1.
2.
3.

Provided that e ~ N(0,σ2)

And best of all: This 
distribution is 

known i.e. one can 
calculate it.  

Much as one can 
calculate sine or 

cosine

t8

t



A null-hypothesis
A test-statistic
A null-distribution

An example experiment

So, with these tools let us do an experiment

H0: = , H1: >1.
2.
3.

x1 x2 x1 x2
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A null-hypothesis
A test-statistic
A null-distribution

An example experiment

So, with these tools let us do an experiment

H0: = , H1: >1.
2.
3.

x1 x2 x1 x2

t8 = 2.64

If the null-hypothesis is 
true, we would expect to 
have a ~1.46% chance of 
finding a t-value this large 

or larger

t8



A null-hypothesis
A test-statistic
A null-distribution

An example experiment

So, with these tools let us do an experiment

H0: = , H1: >1.
2.
3.

x1 x2 x1 x2

t8 = 2.64

t8

t8 = 2.64*

There is ~1.46% risk that 
we reject the null-

hypothesis (i.e. claim we 
found something) when 
the null is actually true.
We can live with that 

(well, I can).
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and “false negatives”.
• But what does that actually mean?
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False positives/negatives
H0 is true
H0 is false } True state of affairs

We don’t reject H0

We reject H0 } Our decision

H0 is true

H0 is false

We don’t reject H0     We reject H0

☺

☺

False positive
Type I error

False negative
Type II error



Outline
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Multiple Comparisons

• In neuroimaging we typically perform many tests as 
part of a study

Different here? Maybe here? Or here?

…

…



What happens when we apply this to 
imaging data?

16 clusters
288 voxels
~5.5% of the voxels

z-map where each voxel ~N.
Null-hypothesis true everywhere, i.e. 

NO ACTIVATIONS

z

1.64

0.05

z-map 
thresholded at 

1.64

That’s a LOT of false positives



Italians doing maths:  
The Bonferroni correction

5255 voxels

0.05/5255≈10-5

10-5

5.65
z-map 

thresholded at 
5.65

No false positives.  
Hurrah for Italy!

Bonferroni says threshold at α divided by # of tests



But ... doesn’t 5.65 sound very high?

10-5

5.65

Observed values 
in the z-map

Largest 
observed value

Bonferroni 
threshold

1.64

0.05

Too lenient Too harsh

So what do we want then?



Let’s say we perform a series of identical studies

Each z-map is the end 
result of a study

Let us further say that the null-hypothesis is true

We want to threshold the data so that only once in 20 
studies do we find a voxel above this threshold

But how do we find 
such a threshold?

Family-wise error


