Multi-Session & Multi-Subject

® 5 subjects each have three sessions.
Does the group activate on average?

® Use three levels: in the second level we
model the within-subject repeated measure
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Multi-Session & Multi-Subject

® 5 subjects each have three sessions.
Does the group activate on average?

® Use three levels: in the third level we model
the between-subjects variance
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Multi-Session & Multi-Subject

® 5 subjects each have three sessions.
® Does the group activate on average!

® Use three levels:

® in the second level we model the within subject
repeated measure typically using fixed effects(!)
as #sessions are small

® in the third level we model the between subjects
variance using fixed or mixed effects



Reducing variance

Does the group activate on average?
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Single Group Average & Covariates

We have 7 subjects - all in one group.We also have
additional measurements (e.g. age; disability score;
behavioural measures like reaction times):

Does the group activate on average?

use covariates to
‘explain’ variation

estimate mean

estimate std-error
(FE or ME)

0 ' effect size
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Single Group Average & Covariates

Does the group activate on average?

® use covariates to ‘explain’ variation

® need to de-mean additional covariates!
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FEAT Group Analysis

® Run FEAT on raw FMRI data to get first-level .feat
directories, each one with several (consistent) COPEs

"O00 0O N\ FEAT - FMRI Expert Analysis Tool v5.90

Higher-level analysis — | Stats + Post-stats — |

First-level analysis 1
Misc _Hioherlevel analysis  Ligs | post-stats | |

® |ow-res copeN/varcopeN =3 feat/stats

® when higher-level FEAT is run, highres copeN/
varcopeN = feat/reg standard



FEAT Group Analysis

® Run second-level FEAT to get one .gfeat directory

"© © O (X FEAT - FMRI Expert Analysis Tool v5.90
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® the second-level GLM analysis is run separately
for each first-level COPE

® cach lower-level COPE generates its own .feat
directory inside the .gfeat dir




FMRI Group Analysis

Summary:

* Examples shown for: single group; unpaired group diff;
paired t-test; multi-session/level; covariates

* Specific cases all generalise from the basic principles

* Use systematic order of inputs and remember it

* Fixed effects must be used for second-level in multi-
session due to the low number of sessions

* Must demean covariate values before they go into GLM



