FMRI Group Analysis

Voxel-wise group analysis
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Multi-Level FMRI analysis

® uses GLM at both lower and higher levels

® typically need to infer across multiple subjects,
sometimes multiple groups and/or multiple sessions
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® questions of interest involve comparisons at the

highest level
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A simple example

Does the group activate on average?
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A simple example

Does the group activate on average?
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A simple example

Does the group activate on average?
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A simple example

Does the group activate on average?
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A simple example

Does the group activate on average?
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A simple example

Does the group activate on average?
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What group mean are we after? Is it:

|. The group mean for those exact 6 subjects?
Fixed-Effects (FE) Analysis

2. The group mean for the population from which

these 6 subjects were drawn!?
Mixed-Effects (ME) analysis



Fixed-Effects Analysis

Do these exact 6 subjects activate on average?
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Fixed-Effects Analysis

Do these exact 6 subjects activate on average?
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Fixed-Effects Analysis

Do these exact 6 subjects activate on average?
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Fixed Effects Analysis:

® (Consider only these 6 subjects
® estimate the mean across these subject
® only variance is within-subject variance



A simple example

Does the group activate on average?

Group
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What group mean are we after? Is it:

|. The group mean for those exact 6 subjects?
Fixed-Effects (FE) Analysis

2. The group mean for the population from which

these 6 subjects were drawn!?
Mixed-Effects (ME) analysis



Mixed-Effects Analysis

Does the population activate on average?
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Mixed-Effects Analysis

Does the population activate on average?
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Mixed-Effects Analysis

Does the population activate on average?
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Mixed-Effects Analysis:
® (Consider the 6 subjects as samples f%)m a wider population

® estimate the mean across the population
® between-subject variance accounts for random sampling



All-in-One Approach
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® Could use one (huge) GLM to infer group difference

e difficult to ask sub-questions in isolation
® computationally demanding
® need to process again when new data is acquired
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Summary Statistics Approach

In FEAT estimate levels one stage at a time

® At each level: Group
difference
® |nputs are summary stats from levels
below (or FMRI data at the lowest T
evel
) Group
® Outputs are summary stats or
statistic maps for inference
. Subject
® Need to ensure formal equivalence J
between different approaches! T
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FLAME

FMRIB’s Local Analysis of Mixed Effects

® Fully Bayesian framework

® use non-central t-distributions:
Input COPES,VARCOPES & DOFs
from lower-level

® estimate COPES,VARCOPES &

DOFs at current level
® pass these up

® |nfer at top level

® Equivalent to All-in-One approach
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FLAME Inference

® Default is:

® FLAMEI: fast approximation for all voxels (using
marginal variance MAP estimates)

® Optional slower, slightly more accurate approach:

e FLAMEI+2:

e FLAMEI for all voxels, FLAME2 for voxels close to
threshold

e FLAME2: MCMC sampling technique



Choosing Inference Approach

|. Fixed Effects

Y ) X FEAT - FMRI Expert Analysis Tool v5.90

Use for intermediate/top levels Higher-level analysis — | Stats + Post-stats |

2. M|Xed Effects _ OLS Misc | Data | Stats | ST |
@edeffects: FLAMD

Use at top level: quick and less accurate Modil setup wizard

|
Full model setup |
3. Mixed Effects - FLAME |

Use at top level: less quick but more accurate

4. Mixed Effects - FLAME |+2

Use at top level: slow but even more accurate
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FLAME vs. OLS

allow different within-level pat  ctl
variances (e.g. patients vs.
controls)

effect size

allow non-balanced designs
(e.g. containing behavioural ;

scores) :

allow un-equal group sizes

0 ::;%;

solve the ‘negative variance’
problem
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OLS

FLAME

FLAME vs. OLS

® Two ways in which FLAME can give different Z-stats
compared to OLS:

® higher Z due to increased efficiency from using
lower-level variance heterogeneity




OLS

FLAME

FLAME vs. OLS

® Two ways in which FLAME can give different Z-stats
compared to OLS:

® [ower Z due to higher-level variance being
constrained to be positive (i.e. solve the implied
negative variance problem)




Multiple Group Variances

pat ctl
® can deal with multiple

group variances

® separate variance will be 0 effect size
estimated for each variance group (be aware of
#observations for each estimate, though!)

® design matrices need to be ‘separable’,i.e. EVs only
have non-zero values for a single group
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FMRI Group Analysis

Summary:

* Fixed Effects analyses give results for specific sample
* Mixed Effects analyses give results for the population
* Summary statistics separates whole analysis into

different levels, passing up COPE,VARCOPE & DOF
* We use the GLM at every level

* FLAME (FSL) can cope with unbalanced designs,
unequal group sizes, and solves ‘negative variance’

* Multiple variances can be modelled but only when
justified and subject to some constraints



