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• uses GLM at both lower and higher levels

• typically need to infer across multiple subjects, 
sometimes multiple groups and/or multiple sessions

• questions of interest involve comparisons at the 
highest level 

Multi-Level FMRI analysis
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Does the group activate on average?

A simple example
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Does the group activate on average?
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Does the group activate on average?

What group mean are we after? Is it:

1. The group mean for those exact 6 subjects?
Fixed-Effects (FE) Analysis

2. The group mean for the population from which 
these 6 subjects were drawn?
Mixed-Effects (ME) analysis

A simple example
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Do these exact 6 subjects activate on average?

Fixed-Effects Analysis
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Do these exact 6 subjects activate on average?

Fixed-Effects Analysis
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Do these exact 6 subjects activate on average?

• Consider only these 6 subjects
• estimate the mean across these subject
• only variance is within-subject variance

Fixed-Effects Analysis

Group

Mark Steve Karl Will Tom Andrew

YK = XK�K + ⇥K

�K = Xg�g

Fixed Effects Analysis:
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0 effect size

Does the population activate on average?

Mixed-Effects Analysis
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Does the population activate on average?

Mixed-Effects Analysis
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Does the population activate on average?

• Consider the 6 subjects as samples from a wider population
• estimate the mean across the population
• between-subject variance accounts for random sampling

Mixed-Effects Analysis
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All-in-One Approach

• Could use one (huge) GLM to infer group difference

• difficult to ask sub-questions in isolation
• computationally demanding
• need to process again when new data is acquired
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Summary Statistics Approach

• At each level:

• Inputs are summary stats from levels 
below (or FMRI data at the lowest 
level)

• Outputs are summary stats or 
statistic maps for inference

• Need to ensure formal equivalence 
between different approaches! 

In FEAT estimate levels one stage at a time
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FLAME

• Fully Bayesian framework

• use non-central t-distributions: 
Input COPES, VARCOPES & DOFs 
from lower-level

• estimate COPES, VARCOPES & 
DOFs at current level

• pass these up

• Infer at top level

• Equivalent to All-in-One approach

FMRIB’s Local Analysis of Mixed Effects
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FLAME Inference

• Default is:

• FLAME1: fast approximation for all voxels (using 
marginal variance MAP estimates)

• Optional slower, slightly more accurate approach:

• FLAME1+2:

• FLAME1 for all voxels, FLAME2 for voxels close to 
threshold

• FLAME2: MCMC sampling technique



Choosing Inference Approach

1. Fixed Effects

Use for intermediate/top levels

2. Mixed Effects - OLS

Use at top level: quick and less accurate

3. Mixed Effects - FLAME 1

Use at top level: less quick but more accurate

4. Mixed Effects - FLAME 1+2

Use at top level: slow but even more accurate



FLAME vs. OLS

• allow different within-level 
variances (e.g. patients vs. 
controls)

• allow non-balanced designs 
(e.g. containing behavioural 
scores)

• allow un-equal group sizes 

• solve the ‘negative variance’ 
problem
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FLAME vs. OLS

• Two ways in which FLAME can give different Z-stats 
compared to OLS:

• higher Z due to increased efficiency from using 
lower-level variance heterogeneity
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FLAME vs. OLS

• Two ways in which FLAME can give different Z-stats 
compared to OLS:

• Lower Z due to higher-level variance being 
constrained to be positive (i.e. solve the implied 
negative variance problem)
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Multiple Group Variances

• can deal with multiple                                         
group variances

• separate variance will be                                       
estimated for each variance group (be aware of  
#observations for each estimate, though!)

• design matrices need to be ‘separable’, i.e. EVs only 
have non-zero values for a single group
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FMRI Group Analysis

Summary:

• Fixed Effects analyses give results for specific sample
• Mixed Effects analyses give results for the population
• Summary statistics separates whole analysis into 

different levels, passing up COPE, VARCOPE & DOF
• We use the GLM at every level

• FLAME (FSL) can cope with unbalanced designs, 
unequal group sizes, and solves ‘negative variance’

• Multiple variances can be modelled but only when 
justified and subject to some constraints


