

FMRI Group Analysis

Multi-Level FMRI analysis

- uses GLM at both lower and higher levels
- typically need to infer across multiple subjects, sometimes multiple groups and/or multiple sessions

• questions of interest involve comparisons at the highest level

Does the group activate on average?

$$Y_k = X_k \beta_k + \epsilon_k$$

First-level GLM on Mark's 4D FMRI data set

Does the group activate on average?

$$Y_K = X_K \beta_K + \epsilon_K$$

All first-level GLMs on 6 FMRI data set

- I. The group mean for those exact 6 subjects? Fixed-Effects (FE) Analysis
- 2. The group mean for the population from which these 6 subjects were drawn? Mixed-Effects (ME) analysis

Fixed-Effects Analysis

Do these exact 6 subjects activate on average?

Fixed-Effects Analysis

Do these exact 6 subjects activate on average?

Fixed-Effects Analysis

Do these exact 6 subjects activate on average?

- Consider only these 6 subjects
 - estimate the mean across these subject
 - only variance is within-subject variance

- I. The group mean for those exact 6 subjects? Fixed-Effects (FE) Analysis
- 2. The group mean for the population from which these 6 subjects were drawn? Mixed-Effects (ME) analysis

Mixed-Effects Analysis

Does the population activate on average?

 σ_g^2 is the between-subject variance

Mixed-Effects Analysis

Does the population activate on average?

Mixed-Effects Analysis

Does the population activate on average?

$$Y_K = X_K \beta_K + \epsilon_K$$
$$\beta_K = X_g \beta_g + \epsilon_g$$

Mixed-Effects Analysis:

- Consider the 6 subjects as samples from a wider population
 - estimate the mean across the population
 - between-subject variance accounts for random sampling

All-in-One Approach

- Could use one (huge) GLM to infer group difference
 - difficult to ask sub-questions in isolation
 - computationally demanding
 - need to process again when new data is acquired

In FEAT estimate levels one stage at a time

- At each level:
 - Inputs are summary stats from levels below (or FMRI data at the lowest level)
 - Outputs are summary stats or statistic maps for inference
- Need to ensure formal equivalence between different approaches!

FLAME

FMRIB's Local Analysis of Mixed Effects

- Fully Bayesian framework
 - use non-central t-distributions: Input COPES, VARCOPES & DOFs from lower-level
 - estimate COPES, VARCOPES & DOFs at current level
 - pass these up
- Infer at top level
- Equivalent to All-in-One approach

FLAME Inference

- Default is:
 - FLAMEI: fast approximation for all voxels (using marginal variance MAP estimates)
- Optional slower, slightly more accurate approach:
 - FLAMEI+2:
 - FLAMEI for all voxels, FLAME2 for voxels close to threshold
 - FLAME2: MCMC sampling technique

Choosing Inference Approach

I. Fixed Effects

Use for intermediate/top levels

2. Mixed Effects - OLS

Use at top level: quick and less accurate

3. Mixed Effects - FLAME I

Use at top level: less quick but more accurate

4. Mixed Effects - FLAME I+2

Use at top level: slow but even more accurate

🔿 🔿 🔿 🔀 FEAT - FMRI Expert Analysis Tool v5.90								
	Higher-level analysis 🛁				Stats + Post-stats 🛁			
				State		Y	1	
M	lisc I	Data	Pre-stats	Stats	Post-stats	Registration	- I	
	Mixed	effect	s: FLAME 1	-				
	Mo	odel s	etup wizard					
	Full model setup							
_								
	Go	I	Save	Load	Exit	Help	Utils	

FLAME vs. OLS

- allow different within-level variances (e.g. patients vs. controls)
- allow non-balanced designs (e.g. containing behavioural scores)
- allow un-equal group sizes
- solve the 'negative variance' problem

FLAME vs. OLS

- Two ways in which FLAME can give different Z-stats compared to OLS:
 - higher Z due to increased efficiency from using lower-level variance heterogeneity

OLS

FLAME

FLAME vs. OLS

- Two ways in which FLAME can give different Z-stats compared to OLS:
 - Lower Z due to higher-level variance being constrained to be positive (i.e. solve the implied negative variance problem)

Multiple Group Variances

• can deal with multiple group variances

- separate variance will be 0 effect size estimated for each variance group (be aware of #observations for each estimate, though!)
- design matrices need to be 'separable', i.e. EVs only have non-zero values for a single group

1	-	1.0	•	0	-
1	-	1.0	-	0	-
1	-	1.0	-	0	-
2	-	0	-	1.0	-
2	-	0	-	1.0	-
2		0	-	1.0	-

valid

1 🚔	1.0 🚔	1.0 🚔
1 🚔	1.0 🚔	1.0 🚔
1 🚔	1.0 🚔	1.0 🚔
2 🌲	1.0 🚔	-1.0 🚔
2 🚔	1.0 🚔	-1.0 🚔
2	1.0 🚔	-1.0 🚔

invalid

FMRI Group Analysis

Summary:

- Fixed Effects analyses give results for specific sample
- Mixed Effects analyses give results for the population
- Summary statistics separates whole analysis into different levels, passing up COPE, VARCOPE & DOF
- We use the GLM at every level
- FLAME (FSL) can cope with unbalanced designs, unequal group sizes, and solves 'negative variance'
- Multiple variances can be modelled but only when justified and subject to some constraints