

TFCE for TBSS

controls > schizophrenics p<0.05 corrected for multiple comparisons across space, using randomise

cluster-based: cluster-forming threshold = 2 or 3

TFCE

eddy and topup - tools for processing of diffusion data

Outline of the talk

- What is the problem with diffusion data?
- Off-resonance field
 - How does it cause distortions?
 - Where does it come from?
- Registering diffusion data
 - How topup works
 - How eddy works
- Practicalities
- Some results
- Quality control
- "Advanced" eddy features

Practicalities

•Our example data consists of:

- •N diffusion weighted volumes and n b=0 volumes
- •*b*=0 volumes interspersed
- •Two repetitions, phase-encode $L \rightarrow R$ and $R \rightarrow L$
- •Same diffusion table for both repetitions

Practicalities

Practicalities

And everything is of course affected by subject movement.

So, let's start with susceptibility

Extract the/some b=0 volumes using fslroi

- - -

topup --imain=my_b0s

topup --imain=my_b0s --datain=acqparams.txt

 $\begin{array}{ccccccc} -1 & 0 & 0 & 0.051 \\ -1 & 0 & 0 & 0.051 \\ 1 & 0 & 0 & 0.051 \\ 1 & 0 & 0 & 0.051 \end{array}$

Text file that we can call for example acqparams.txt

topup --imain=my_b0s --datain=acqparams.txt --config=b02b0.cnf

 $\begin{array}{ccccccc} -1 & 0 & 0 & 0.051 \\ -1 & 0 & 0 & 0.051 \\ 1 & 0 & 0 & 0.051 \\ 1 & 0 & 0 & 0.051 \end{array}$

acqparams.txt

And the tool for that is topup And finally we need to tell it where to put the results --out=my topup topup --imain=my_b0s --datain=acqparams.txt --config=b02b0.cnf my_topup_movpar.txt 0 0 0 0 0 0 Tells position of 2nd b=0 ► 0.72 -0.02 -0.07 0.002 0.000 0.002 scan relative the first 0 -0.11 -0.33 0.002 0.013 -0.004 -0.70 -0.12 -0.43 0.002 0.014 -0.004

Back to the full data-set

Now we want to correct the eddy current-distortions and subject movement in the whole data set.

my_topup_fieldcoef.nii

-1 0 0 0.051 -1 0 0 0.051 1 0 0 0.051 1 0 0 0.051 acqparams.txt

0 0 0 0 0 0 0.72 -0.02 -0.07 0.002 0.000 0.002 0 -0.11 -0.33 0.002 0.013 -0.004 -0.70 -0.12 -0.43 0.002 0.014 -0.004 my_topup_movpar.txt

The first thing we do is to collect all data in a single file using fslmerge and call it for example LR_RL

my_topup_fieldcoef.nii

-1 0 0 0.051 -1 0 0 0.051 1 0 0 0.051 1 0 0 0.051 acqparams.txt

0 0 0 0 0 0 0.72 -0.02 -0.07 0.002 0.000 0.002 0 -0.11 -0.33 0.002 0.013 -0.004 -0.70 -0.12 -0.43 0.002 0.014 -0.004 my_topup_movpar.txt

Inform eddy of acquisition parameters

Then we make a text file with one index for each volume, and call it for example indx.txt

my_topup_fieldcoef.nii

-1 0 0 0.051 -1 0 0 0.051 1 0 0 0.051 1 0 0 0.051 acqparams.txt

0 0 0 0 0 0 0.72 -0.02 -0.07 0.002 0.000 0.002 0 -0.11 -0.33 0.002 0.013 -0.004 -0.70 -0.12 -0.43 0.002 0.014 -0.004 my_topup_movpar.txt

Inform eddy of acquisition parameters

Inform eddy of acquisition parameters

11111111111111222

And by referring into my_topup_movpar.txt it gives a starting guess for the relative subject position for each volume

my topup fieldcoef.nii

-1 0 0 0.051 -1 0 0 0.051 1 0 0 0.051 1 0 0 0.051 acqparams.txt

0 0 0 0 0 0 0.72 -0.02 -0.07 0.002 0.000 0.002 0 -0.11 -0.33 0.002 0.013 -0.004 -0.70 -0.12 -0.43 0.002 0.014 -0.004 my_topup_movpar.txt ... LR RL

333333333333333444 ... indx.txt

And we also need to know the b-value and b-vector for each volume (same as for dtifit or bedpost).

my_topup_fieldcoef.nii

-1 0 0 0.051 -1 0 0 0.051 1 0 0 0.051 1 0 0 0.051 acqparams.txt

0 0 0 0 0 0 0.72 -0.02 -0.07 0.002 0.000 0.002 0 -0.11 -0.33 0.002 0.013 -0.004 -0.70 -0.12 -0.43 0.002 0.014 -0.004 1111... my_topup_movpar.txt indx.txt

And finally a binary mask that tells eddy which voxels are brain. Also the same that is used for dtifit/bedpost.

my_topup_fieldcoef.nii

-1 0 0 0.051 -1 0 0 0.051 1 0 0 0.051 1 0 0 0.051 acqparams.txt

0 0 0 0 0 0 0.72 -0.02 -0.07 0.002 0.000 0.002 0 -0.11 -0.33 0.002 0.013 -0.004 -0.70 -0.12 -0.43 0.002 0.014 -0.004 1111... my_topup_movpar.txt indx.txt indx.txt bvecs

And now we can run eddy

eddy --imain=LR_RL --acqp=acqparams.txt
--index=indx.txt --bvecs=bvecs
--bvals=bvals --mask=brain_mask
--topup=my topup --out=my eddy

And now we are ready for the most horrible command line in all of fsl

my_topup_fieldcoef.nii

•Data consists of:

- •N diffusion weighted volumes and n b=0 volumes
- •b=0 volumes interspersed, but 2–3 are up front.
- •2–3 b=0 volumes with opposing PE acquired just before the acquisition of the diffusion data set.

Extract one "good" *b*=0 volume for each PE-direction using fslroi

Collect them into one 4D file using fslmerge

 $-1 \ 0 \ 0 \ .051$ 1 0 0 0.051 Create text file acqparams.txt

-1 0 0 0.051 1 0 0 0.051 And run topup

topup --imain=my_b0s --datain=acqparams.txt
 --config=b02b0.cnf --out=my_topup

ESI

A simpler (and perhaps more realistic) example

RSIL

A simpler (and perhaps more realistic) example

eddy --imain=LR_RL --acqp=acqparams.txt
--index=indx.txt --bvecs=bvecs
--bvals=bvals --mask=brain_mask
--topup=my_topup --out=my_eddy

And the eddy command is the same as before (N.B. you need to create brain_mask.nii.gz in the same way as before)

Outline of the talk

- What is the problem with diffusion data?
- Off-resonance field
 - How does it cause distortions?
 - Where does it come from?
- Registering diffusion data
 - How topup works
 - How eddy works
- Practicalities
- Some results
- Quality control
- "Advanced" eddy features

HCP-data, 150 directions, b=3000, blip-up-blip-down

MGH-data, 198 directions, b=10000!

MGH-data, 198 directions, b=10000!

Outline of the talk

- What is the problem with diffusion data?
- Off-resonance field
 - How does it cause distortions?
 - Where does it come from?
- Registering diffusion data
 - How topup works
 - How eddy works
- Practicalities
- Some results
- Quality control
- "Advanced" eddy features

EDDY QC: single-subject reports

Biobank subject A

Volume-to-volume motion

Average abs. motion (mm)	0.81
Average rel. motion (mm)	0.88
Average x translation (mm)	0.17
Average y translation (mm)	-0.10
Average z translation (mm)	-0.02
Average x rotation (deg)	0.07
Average y rotation (deg)	0.17
Average z rotation (deg)	0.15

Outliers

Total outliers (%)	0.11
Outliers (b=1000 s/mm ²)	0.22
Outliers (b=2000 s/mm ²)	0.00
Outliers (PE dir=[0. 1. 0.])	0.00
Outliers (PE dir=[01. 0.])	0.11

Within-volume motion

	Avg std x translation (mm)	0.02
•	Avg std y translation (mm)	0.11
	Avg std z translation (mm)	0.04
	Avg std x rotation (deg)	0.05
•	Avg std y rotation (deg)	0.05
	Avg std z rotation (deg)	0.06

Biobank subject B

Volume-to-volume motion

Average abs. motion (mm)	1.86
Average rel. motion (mm)	1.24
Average x translation (mm)	-0.43
Average y translation (mm)	0.39
Average z translation (mm)	0.69
Average x rotation (deg)	0.50
Average y rotation (deg)	0.49
Average z rotation (deg)	-0.55

Within-volume motion

-	Avg std x translation (mm)	0.08
-	Avg std y translation (mm)	0.22
-	Avg std z translation (mm)	0.13
-	Avg std x rotation (deg)	0.15
-	Avg std y rotation (deg)	0.09
-	Avg std z rotation (deg)	0.11

Outliers

Total outliers (%)	2.86
Outliers (b=1000 s/mm ²)	4.69
Outliers (b=2000 s/mm ²)	1.13
Outliers (PE dir=[0. 1. 0.])	2.55
Outliers (PE dir=[01. 0.])	2.66

EDDY QC: group report

Data quality illustration

Outline of the talk

- What is the problem with diffusion data?
- Off-resonance field
 - How does it cause distortions?
 - Where does it come from?
- Registering diffusion data
 - How topup works
 - How eddy works
- Practicalities
- Some results
- Quality control
- "Advanced" eddy features