

TFCE for TBSS

controls > schizophrenics p<0.05 corrected for multiple comparisons across space, using randomise

cluster-based: cluster-forming threshold = 2 or 3

TFCE

eddy and topup - tools for processing of diffusion data

Separate estimation of susceptibilityand eddy current-fields

So, what we need to estimate is

One of these per subject

One of these per volume

topup

eddy

FSL-tools:

Outline of the talk

- What is the problem with diffusion data?
- Off-resonance field
 - How does it cause distortions?
 - Where does it come from?
- Registering diffusion data
 - How topup works
 - How eddy works
- Practicalities
- Some results
- Quality control
- "Advanced" eddy features

Given two images acquired with different phase-encoding

p=[0 1 0]

How topup works (very briefly)

And we know what the off-resonance field is

How topup works (very briefly)

How topup works (very briefly)

p=[0 1 0]

We can combine this with the PE information to get displacement maps

p=[0 -1 0]

And use that to correct the distortions

How topup works (very briefly)

p=[0 -1 0]

BUT we don't know the field. That is what we want topup to calculate.

topup "guesses" a field...

p=[0 1 0]

How topup works (very briefly)

...calculates the displacement maps...

p=[0 -1 0] ... "corrects" the images...

How topup works (very briefly)

...and evaluates the results... And this is the crucial bit.

How topup works (very briefly)

p=[0 -1 0]

better

Because topup can then "guess" another field

even better

...and another...until it is happy, and then it "knows" the field

Outline of the talk

- What is the problem with diffusion data?
- Off-resonance field
 - How does it cause distortions?
 - Where does it come from?
- Registering diffusion data
 - How topup works
 - How eddy works
- Practicalities
- Some results
- Quality control
- "Advanced" eddy features

Worlds shortest course on image registration

Maximising/minimising an objective/cost-function

But it is not easy to register diffusion weighted images

- Each image has different distortions -> non-linear registration
- What is the reference image?

Zoltar -- The prediction maker

Given some data in, Zoltar will make a prediction what the data "should" be. The prediction for a given dwi will not be identical to the "input" for that dwi

I know this sounds crazy, but please trust me on this. (Zoltar is actually a Gaussian Process)

How eddy works: Loading step

Pick the first dwi

Use current estimates ofSuscECMP $\begin{bmatrix} 0\\ 0 \end{bmatrix}$

0

To correct image

And load into prediction maker

How eddy works: Loading step

then the 2nd dwi

Use current estimates of
SuscECMP $\begin{bmatrix} 0\\0\\\vdots\\0 \end{bmatrix}$

To correct 2nd image And load into prediction maker

Until we have loaded all dwis

How eddy works: Estimation step

Draw a prediction for first dwi

To get prediction in "observation space"

And compare to actual observation

How eddy works: Estimation step

Draw a prediction for 2nd dwi

Use current estimates of
SuscMPImage: Constraint of the second seco

And then we repeat the procedure for the next dwi ...

Invert

How eddy works

Under the hood of Zoltar

The signal is "modelled" in a data-driven fashion assuming that points close together on the unit sphere have similar signal.

Under the hood of Zoltar

The GP can model voxels with complicated anatomy while still being computationally convenient.

Shells with strong signal can help inform predictions in shells with poor signal