

TFCE for TBSS

controls > schizophrenics p<0.05 corrected for multiple comparisons across space, using randomise

cluster-based: cluster-forming threshold = 2 or 3

TFCE

eddy and topup - tools for processing of diffusion data

Outline of the talk

- What is the problem with diffusion data?
- Off-resonance field
 - How does it cause distortions?
 - Where does it come from?
- Registering diffusion data
 - How topup works
 - How eddy works
- Practicalities
- Some results
- Quality control
- "Advanced" eddy features

Outline of the talk

- What is the problem with diffusion data?
- Off-resonance field
 - How does it cause distortions?
 - Where does it come from?
- Registering diffusion data
 - How topup works
 - How eddy works
- Practicalities
- Some results
- Quality control
- "Advanced" eddy features

Well, it isn't very anatomically faithful

In fact, it isn't even internally consistent

In fact, it isn't even internally consistent

In fact, it isn't even internally consistent

Outline of the talk

- What is the problem with diffusion data?
- Off-resonance field
 - How does it cause distortions?
 - Where does it come from?
- Registering diffusion data
 - How topup works
 - How eddy works
- Practicalities
- Some results
- Quality control
- "Advanced" eddy features

An "off-resonance" field is a map of the difference between what we think the field is and what it really is.

It is all caused by an "off-resonance" field

Off-resonance field \Rightarrow Distortions or this Can vield this scanned in But this object this field

So there is clearly more to this story...

An off-resonance field is effectively a scaled voxel-displacement map.

If we know the imaging parameters we can do the translation.

And know what to expect

An off-resonance field is effectively a scaled voxel-displacement map.

If we know the imaging parameters we can do the translation.

BW/voxel = 10Hz, **p** = [0 1 0]

And know what to expect

So, an off-resonance field is effectively a scaled voxel-displacement map.

And if we know the imaging parameters we can do the translation.

BW/voxel = 8Hz, **p** = [-1 0 0]

Outline of the talk

- What is the problem with diffusion data?
- Off-resonance field
 - How does it cause distortions?
 - Where does it come from?
- Registering diffusion data
 - How topup works
 - How eddy works
- Practicalities
- Some results
- Quality control
- "Advanced" eddy features

- •There are two sources
- •The first is the object (head) itself.

(CT of) Human head

 $B_0 \odot$

Resulting field

PPMs

Must fulfil $\begin{cases} \nabla \mathbf{x} \mathbf{H} = \mathbf{0} \\ \nabla \mathbf{e} \mathbf{B} = \mathbf{0} \end{cases}$ (still)

- •There are two sources
- •The first is the object (head) itself.

•The second is caused by the diffusion gradient

Separate estimation of susceptibilityand eddy current-fields

So, what we need to estimate is

One of these per subject

One of these per volume

topup

eddy

FSL-tools: