

Diffusion Tensor Imaging - basic principles

- Diffusion in brain tissues
- Apparent Diffusion Coefficient
- Diffusion Tensor model
- Tensor-derived measures

Diffusion Tensor Imaging (DTI)

Diffusion Tensor Model. In each voxel:

[Basser, Biophys J,1994], [Basser et al , J Magn Res, 1994]

The Elements of the Diffusion Tensor

$$
\mathbf{D} = \begin{bmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{xy} & D_{yy} & D_{yz} \\ D_{xz} & D_{yz} & D_{zz} \end{bmatrix}
$$

- Tensor is **symmetric** (6 unknowns)

- **Diagonal Elements** are proportional to the diffusion displacement variances (**ADCs**) along the three directions of the experiment coordinate system

-**Off-diagonal Elements** are

proportional to the **correlations** (covariances) of displacements along these directions

N3 (0, 2t**D**)

Why do we need a tensor?

Why do we need a tensor?

Why do we need a tensor?

 \int *Dx Dxy* $D_{\bm{xy}}$ *D*_y D_{xy} $\begin{bmatrix} \end{bmatrix}$ D_{xy}

The Diffusion Tensor Eigenspectrum

Once D is estimated, we get ADCs along the scanner's coordinate system. But we want ADCs along a local coordinate system in each voxel, determined by the anatomy.

The Diffusion Tensor Eigenspectrum

Once D is estimated, we get ADCs along the scanner's coordinate system. But we want ADCs along a local coordinate system in each voxel, determined by the anatomy.

Diagonalize the estimated tensor in each voxel

$$
\lambda_2 \mathbf{v}_2
$$

$$
\mathbf{D} = [\mathbf{v_1}|\mathbf{v_2}|\mathbf{v_3}]^{\mathrm{T}} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} [\mathbf{v_1}|\mathbf{v_2}|\mathbf{v_3}]
$$

eigenvectors - $\mathbf{v_1}$ =direction of
max diffusivity

max diffusivity eigenvalues: ADCs along **v**1,**v**2,**v**³

The Diffusion Tensor Ellipsoid

The Diffusion Tensor Ellipsoid

Fractional Anisotropy (FA) ~ Eigenvalues Variance (normalised) Mean Diffusivity (MD) = Eigenvalues Mean

$$
FA = \sqrt{\frac{3 \sum_{i=1}^{3} (\lambda_i - \overline{\lambda})^2}{2 \sum_{i=1}^{3} \lambda_i^2}}, \quad HA \text{ in } [0,1]
$$

$$
MD = \frac{D_{xx} + D_{yy} + D_{zz}}{3} = \frac{\lambda_1 + \lambda_2 + \lambda_3}{3}
$$

Transverse/radial/perpendicular ADC $(\lambda_2+\lambda_3)/2$

FA decrease/ MD increase has been associated in many studies with tissue breakdown (loss of structure).

Fractional Anisotropy changes in MS normal appearing white matter

FA decrease/ MD increase has been associated in many studies with tissue breakdown (loss of structure).

Fractional Anisotropy changes in MS normal appearing white matter

Different scenarios can have same effect on FA, MD

Tensor and FA in Crossing Regions

- In voxels containing two crossing bundles, FA is low and the tensor ellipsoid is pancake-shaped (oblate, planar tensor).

Tensor and FA in Crossing Regions

- In voxels containing two crossing bundles, FA is low and the tensor ellipsoid is pancake-shaped (oblate, planar tensor).

Diffusion Tensor Ellipsoids

Estimates of Principal Fibre Orientation in WM

v1 map Principal Diffusion Direction

Principal Diffusion **Direction**

Assumption!!

Direction of maximum

diffusivity in voxels with anisotropic profile is an **estimate of the major fibre orientation**.

Estimates of Principal Fibre Orientation in WM

Colour-coded v_1 map

Directional contrast in DTI

