Source code for fsl.data.cifti

"""
Provides a sparse representation of volumetric and/or surface data

The data can be either defined per voxel/vertex (:class:`DenseCifti`) or per parcel (`class:`ParcelCifti`).

The data can be read from NIFTI, GIFTI, or CIFTI files.
Non-sparse volumetric or surface representations can be extracte.
"""
from nibabel.cifti2 import cifti2_axes
from typing import Sequence, Optional, Union
import numpy as np
from fsl.data import image
import nibabel as nib
from fsl.utils.path import addExt


dense_extensions = {
    cifti2_axes.BrainModelAxis: '.dconn.nii',
    cifti2_axes.ParcelsAxis: '.dpconn.nii',
    cifti2_axes.SeriesAxis: '.dtseries.nii',
    cifti2_axes.ScalarAxis: '.dscalar.nii',
    cifti2_axes.LabelAxis: '.dlabel.nii',
}

parcel_extensions = {
    cifti2_axes.BrainModelAxis: '.pdconn.nii',
    cifti2_axes.ParcelsAxis: '.pconn.nii',
    cifti2_axes.SeriesAxis: '.ptseries.nii',
    cifti2_axes.ScalarAxis: '.pscalar.nii',
    cifti2_axes.LabelAxis: '.plabel.nii',
}


[docs] class Cifti: """ Parent class for the two types of CIFTI files. The type of the CIFTI file is determined by the last axis, which can be one of: - :py:class:`BrainModelAxis <cifti2_axes.BrainModelAxis>` - :py:class:`ParcelsAxis <cifti2_axes.ParcelsAxis>` """
[docs] def __init__(self, arr: np.ndarray, axes: Sequence[Optional[cifti2_axes.Axis]]): """ Defines a new dataset in greyordinate space :param data: (..., N) array for N greyordinates or parcels; can contain Nones for undefined axes :param axes: sequence of CIFTI axes describing the data along each dimension """ self.arr = arr axes = tuple(axes) while self.arr.ndim > len(axes): axes = (None, ) + axes self.axes = axes if not all(ax is None or len(ax) == sz for ax, sz in zip(axes, self.arr.shape)): raise ValueError(f"Shape of axes {tuple(-1 if ax is None else len(ax) for ax in axes)} does not " f"match shape of array {self.arr.shape}")
[docs] def to_cifti(self, default_axis=None): """ Create a CIFTI image from the data :param default_axis: What to use as an axis along any undefined dimensions - By default an error is raised - if set to "scalar" a ScalarAxis is used with names of "default {index}" - if set to "series" a SeriesAxis is used :return: nibabel CIFTI image """ if any(ax is None for ax in self.axes): if default_axis is None: raise ValueError("Can not store to CIFTI without defining what is stored along each dimension") elif default_axis == 'scalar': def get_axis(n: int): return cifti2_axes.ScalarAxis([f'default {idx + 1}' for idx in range(n)]) elif default_axis == 'series': def get_axis(n: int): return cifti2_axes.SeriesAxis(0, 1, n) else: raise ValueError(f"default_axis should be set to None, 'scalar', or 'series', not {default_axis}") new_axes = [ get_axis(sz) if ax is None else ax for ax, sz in zip(self.axes, self.arr.shape) ] else: new_axes = list(self.axes) data = self.arr if data.ndim == 1: # CIFTI axes are always at least 2D data = data[None, :] new_axes.insert(0, cifti2_axes.ScalarAxis(['default'])) return nib.Cifti2Image(data, header=new_axes)
[docs] @classmethod def from_cifti(cls, filename, writable=False): """ Creates new greyordinate object from dense CIFTI file :param filename: CIFTI filename or :class:`nib.Cifti2Image` object :param writable: if True, opens data array in writable mode """ if isinstance(filename, str): img = nib.load(filename) else: img = filename if not isinstance(img, nib.Cifti2Image): raise ValueError(f"Input {filename} should be CIFTI filename or nibabel Cifti2Image") if writable: data = np.memmap(filename, img.dataobj.dtype, mode='r+', offset=img.dataobj.offset, shape=img.shape, order='F') else: data = np.asanyarray(img.dataobj) axes = [img.header.get_axis(idx) for idx in range(data.ndim)] if isinstance(axes[-1], cifti2_axes.BrainModelAxis): return DenseCifti(data, axes) elif isinstance(axes[-1], cifti2_axes.ParcelsAxis): return ParcelCifti(data, axes) raise ValueError("Last axis of CIFTI object should be a BrainModelAxis or ParcelsAxis")
[docs] def save(self, cifti_filename, default_axis=None): """ Writes this sparse representation to/from a filename :param cifti_filename: output filename :param default_axis: What to use as an axis along any undefined dimensions - By default an error is raised - if set to "scalar" a ScalarAxis is used with names of "default {index}" - if set to "series" a SeriesAxis is used :return: """ self.to_cifti(default_axis).to_filename(addExt(cifti_filename, defaultExt=self.extension, mustExist=False))
[docs] @classmethod def from_gifti(cls, filename, mask_values=(0, np.nan)): """ Creates a new greyordinate object from a GIFTI file :param filename: GIFTI filename :param mask_values: values to mask out :return: greyordinate object representing the unmasked vertices """ if isinstance(filename, str): img = nib.load(filename) else: img = filename datasets = [darr.data for darr in img.darrays] if len(datasets) == 1: data = datasets[0] else: data = np.concatenate( [np.atleast_2d(d) for d in datasets], axis=0 ) mask = np.ones(data.shape, dtype='bool') for value in mask_values: if value is np.nan: mask &= ~np.isnan(data) else: mask &= ~(data == value) while mask.ndim > 1: mask = mask.any(0) anatomy = BrainStructure.from_gifti(img) bm_axes = cifti2_axes.BrainModelAxis.from_mask(mask, name=anatomy.cifti) return DenseCifti(data[..., mask], [bm_axes])
[docs] @classmethod def from_image(cls, input, mask_values=(np.nan, 0)): """ Creates a new greyordinate object from a NIFTI file :param input: FSL :class:`image.Image` object :param mask_values: which values to mask out :return: greyordinate object representing the unmasked voxels """ img = image.Image(input) mask = np.ones(img.data.shape, dtype='bool') for value in mask_values: if value is np.nan: mask &= ~np.isnan(img.data) else: mask &= ~(img.data == value) while mask.ndim > 3: mask = mask.any(-1) if np.sum(mask) == 0: raise ValueError("No unmasked voxels found in NIFTI image") inverted_data = np.transpose(img.data[mask], tuple(range(1, img.data.ndim - 2)) + (0, )) bm_axes = cifti2_axes.BrainModelAxis.from_mask(mask, affine=img.nibImage.affine) return DenseCifti(inverted_data, [bm_axes])
[docs] class DenseCifti(Cifti): """ Represents sparse data defined for a subset of voxels and vertices (i.e., greyordinates) """
[docs] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if not isinstance(self.brain_model_axis, cifti2_axes.BrainModelAxis): raise ValueError(f"DenseCifti expects a BrainModelAxis as last axes object, not {type(self.brain_model_axis)}")
@property def brain_model_axis(self, ) -> cifti2_axes.BrainModelAxis: return self.axes[-1] @property def extension(self, ): if self.arr.ndim == 1: return dense_extensions[cifti2_axes.ScalarAxis] return dense_extensions[type(self.axes[-2])]
[docs] def to_image(self, fill=0) -> image.Image: """ Get the volumetric data as an :class:`image.Image` """ if self.brain_model_axis.volume_mask.sum() == 0: raise ValueError(f"Can not create volume without voxels in {self}") data = np.full(self.brain_model_axis.volume_shape + self.arr.shape[:-1], fill, dtype=self.arr.dtype) voxels = self.brain_model_axis.voxel[self.brain_model_axis.volume_mask] data[tuple(voxels.T)] = np.transpose(self.arr, (-1,) + tuple(range(self.arr.ndim - 1)))[ self.brain_model_axis.volume_mask] return image.Image(data, xform=self.brain_model_axis.affine)
[docs] def surface(self, anatomy, fill=np.nan, partial=False): """ Gets a specific surface If `partial` is True a view of the data rather than a copy is returned. :param anatomy: BrainStructure or string like 'CortexLeft' or 'CortexRight' :param fill: which value to fill the array with if not all vertices are defined :param partial: only return the part of the surface defined in the greyordinate file (ignores `fill` if set) :return: - if not partial: (..., n_vertices) array - if partial: tuple with (N, ) int array with indices on the surface included in (..., N) array """ if isinstance(anatomy, str): anatomy = BrainStructure.from_string(anatomy, issurface=True) if anatomy.cifti not in self.brain_model_axis.name: raise ValueError(f"No surface data for {anatomy.cifti} found") slc, bm = None, None arr = np.full(self.arr.shape[:-1] + (self.brain_model_axis.nvertices[anatomy.cifti],), fill, dtype=self.arr.dtype) for name, slc_try, bm_try in self.brain_model_axis.iter_structures(): if name == anatomy.cifti: if partial: if bm is not None: raise ValueError(f"Surface {anatomy} does not form a contiguous block") slc, bm = slc_try, bm_try else: arr[..., bm_try.vertex] = self.arr[..., slc_try] if not partial: return arr else: return bm.vertex, self.arr[..., slc]
[docs] class ParcelCifti(Cifti): """ Represents sparse data defined at specific parcels """
[docs] def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) if not isinstance(self.parcel_axis, cifti2_axes.ParcelsAxis): raise ValueError(f"ParcelCifti expects a ParcelsAxis as last axes object, not {type(self.parcel_axis)}")
@property def extension(self, ): if self.arr.ndim == 1: return parcel_extensions[cifti2_axes.ScalarAxis] return parcel_extensions[type(self.axes[-2])] @property def parcel_axis(self, ) -> cifti2_axes.ParcelsAxis: return self.axes[-1]
[docs] def to_image(self, fill=0): """ Get the volumetric data as an :class:`Image` """ data = np.full(self.parcel_axis.volume_shape + self.arr.shape[:-1], fill, dtype=self.arr.dtype) written = np.zeros(self.parcel_axis.volume_shape, dtype='bool') for idx, write_to in enumerate(self.parcel_axis.voxels): if written[tuple(write_to.T)].any(): raise ValueError("Duplicate voxels in different parcels") data[tuple(write_to.T)] = self.arr[np.newaxis, ..., idx] written[tuple(write_to.T)] = True if not written.any(): raise ValueError("Parcellation does not contain any volumetric data") return image.Image(data, xform=self.parcel_axis.affine)
[docs] def surface(self, anatomy, fill=np.nan, partial=False): """ Gets a specific surface :param anatomy: BrainStructure or string like 'CortexLeft' or 'CortexRight' :param fill: which value to fill the array with if not all vertices are defined :param partial: only return the part of the surface defined in the greyordinate file (ignores `fill` if set) :return: - if not partial: (..., n_vertices) array - if partial: tuple with (N, ) int array with indices on the surface included in (..., N) array """ if isinstance(anatomy, str): anatomy = BrainStructure.from_string(anatomy, issurface=True) if anatomy.cifti not in self.parcel_axis.nvertices: raise ValueError(f"No surface data for {anatomy.cifti} found") arr = np.full(self.arr.shape[:-1] + (self.parcel_axis.nvertices[anatomy.cifti],), fill, dtype=self.arr.dtype) written = np.zeros(self.parcel_axis.nvertices[anatomy.cifti], dtype='bool') for idx, vertices in enumerate(self.parcel_axis.vertices): if anatomy.cifti not in vertices: continue write_to = vertices[anatomy.cifti] if written[write_to].any(): raise ValueError("Duplicate vertices in different parcels") arr[..., write_to] = self.arr[..., idx, np.newaxis] written[write_to] = True if not partial: return arr else: return np.where(written)[0], arr[..., written]
[docs] class BrainStructure(object): """Which brain structure does the parent object describe? Supports how brain structures are stored in both GIFTI and CIFTI files """
[docs] def __init__(self, primary, secondary=None, hemisphere='both', geometry=None): """Creates a new brain structure :param primary: Name of the brain structure (e.g. cortex, thalamus) :param secondary: Further specification of which part of the brain structure is described (e.g. 'white' or 'pial' for the cortex) :param hemisphere: which hemisphere is the brain structure in ('left', 'right', or 'both') :param geometry: does the parent object describe the 'volume' or the 'surface' """ self.primary = primary.lower() self.secondary = None if secondary is None else secondary.lower() self.hemisphere = hemisphere.lower() if geometry not in (None, 'surface', 'volume'): raise ValueError(f"Invalid value for geometry: {geometry}") self.geometry = geometry
[docs] def __eq__(self, other): """Two brain structures are equal if they could describe the same structure """ if isinstance(other, str): other = self.from_string(other) match_primary = (self.primary == other.primary or self.primary == 'all' or other.primary == 'all' or self.primary == other.geometry or self.geometry == other.primary) match_hemisphere = self.hemisphere == other.hemisphere match_secondary = (self.secondary is None or other.secondary is None or self.secondary == other.secondary) match_geometry = (self.geometry is None or other.geometry is None or self.geometry == other.geometry) return match_primary and match_hemisphere and match_secondary and match_geometry
@property def gifti(self, ): """Returns the keywords needed to define the surface in the meta information of a GIFTI file """ main = self.primary.capitalize() + ('' if self.hemisphere == 'both' else self.hemisphere.capitalize()) res = {'AnatomicalStructurePrimary': main} if self.secondary is not None: res['AnatomicalStructureSecondary'] = self.secondary.capitalize() return res
[docs] def __str__(self, ): """Returns a short description of the brain structure """ if self.secondary is None: return self.primary.capitalize() + self.hemisphere.capitalize() else: return "%s%s(%s)" % (self.primary.capitalize(), self.hemisphere.capitalize(), self.secondary)
@property def cifti(self, ): """Returns a description of the brain structure needed to define the surface in a CIFTI file """ return 'CIFTI_STRUCTURE_' + self.primary.upper() + ('' if self.hemisphere == 'both' else ('_' + self.hemisphere.upper()))
[docs] @classmethod def from_string(cls, value, issurface=None): """Parses a string to find out which brain structure is being described :param value: string to be parsed :param issurface: defines whether the object describes the volume or surface of the brain structure (default: surface if the brain structure is the cortex volume otherwise) """ if '_' in value: items = [val.lower() for val in value.split('_')] if items[-1] in ['left', 'right', 'both']: hemisphere = items[-1] others = items[:-1] elif items[0] in ['left', 'right', 'both']: hemisphere = items[0] others = items[1:] else: hemisphere = 'both' others = items if others[0] in ['nifti', 'cifti', 'gifti']: others = others[2:] primary = '_'.join(others) else: low = value.lower() if 'left' == low[-4:]: hemisphere = 'left' primary = low[:-4] elif 'right' == low[-5:]: hemisphere = 'right' primary = low[:-5] elif 'both' == low[-4:]: hemisphere = 'both' primary = low[:-4] else: hemisphere = 'both' primary = low if issurface is None: issurface = primary == 'cortex' if primary == '': primary = 'all' return cls(primary, None, hemisphere, 'surface' if issurface else 'volume')
[docs] @classmethod def from_gifti(cls, gifti_obj): """ Extracts the brain structure from a GIFTI object """ primary_str = 'AnatomicalStructurePrimary' secondary_str = 'AnatomicalStructureSecondary' primary = "other" secondary = None for obj in [gifti_obj] + gifti_obj.darrays: if primary_str in obj.meta: primary = obj.meta[primary_str] if secondary_str in obj.meta: secondary = obj.meta[secondary_str] anatomy = cls.from_string(primary, issurface=True) anatomy.secondary = None if secondary is None else secondary.lower() return anatomy
[docs] def load(filename, mask_values=(0, np.nan), writable=False) -> Union[DenseCifti, ParcelCifti]: """ Reads CIFTI data from the given file File can be: - NIFTI file - GIFTI file - CIFTI file :param filename: input filename :param mask_values: which values are outside of the mask for NIFTI or GIFTI input :param writable: allow to write to disk :return: appropriate CIFTI sub-class (parcellated or dense) """ possible_extensions = ( tuple(dense_extensions.values()) + tuple(parcel_extensions.values()) + tuple(image.ALLOWED_EXTENSIONS) + ('.shape.gii', '.gii') ) if isinstance(filename, str): filename = addExt(filename, possible_extensions, fileGroups=image.FILE_GROUPS) img = nib.load(filename) else: img = filename if isinstance(img, nib.Cifti2Image): return Cifti.from_cifti(img, writable=writable) if isinstance(img, nib.GiftiImage): if writable: raise ValueError("Can not open GIFTI file in writable mode") return Cifti.from_gifti(img, mask_values) try: vol_img = image.Image(img) except ValueError: raise ValueError(f"I do not know how to convert {type(img)} into greyordinates (from {filename})") if writable: raise ValueError("Can not open NIFTI file in writable mode") return Cifti.from_image(vol_img, mask_values)